SITE CONTROLLER: A system for computer-aided civil engineering and construction.

by Philip Greenspun

Site Home : Research : Master's Thesis : One Chapter


Abstract

A revolution in earthmoving, a $100 billion industry, can be achieved with three components: the GPS location system, sensors and computers in earthmoving vehicles, and SITE CONTROLLER, a central computer system that maintains design data and directs operations. The first two components are widely available; I built SITE CONTROLLER to complete the triangle and describe it here.

Civil engineering challenges computer scientists in the following areas: computational geometry, large spatial databases, floating-point artihmetic, software reliability, management of complexity, and real-time control. SITE CONTROLLER demonstrates that most of these challenges may be surmounted by the use of state-of-the-art algorithms, object databases, software development tools, and code-generation techniques. The system works well enough that Caterpillar was able to use SITE CONTROLLER to supervise operations of a 160-ton autonomous truck.

SITE CONTROLLER assists civil engineers in the design, estimation, and construction of earthworks, including hazardous waste site remediation. The core of SITE CONTROLLER is a site modelling system that represents existing and prospective terrain shapes, road and property boundaries, hydrology, important features such as trees, utility lines, and general user notations. Around this core are analysis, simulation, and vehicle control tools. Integrating these modules into one program enables civil engineers and contractors to use a single interface and database throughout the life of a project.

This area is exciting because so much of the infrastructure is in place. A small effort by computer scientists could cut the cost of earthmoving in half, enabling poor countries to build roads and rich countries to clean up hazardous waste.

This report is a revised version of a thesis submitted to the Department of Electrical Engineering and Computer Science in February, 1993, in partial fulfillment of the requirements for the degree of Master of Science.

This report describes research done at the Artificial Intelligence Laboratory of the Massachusetts Institute of Technology. Support for this research is provided in part by the Advanced Research Projects Agency of the Department of Defense under Office of Naval Research contract N00014-92-J-4097 and by the National Science Foundation under grant number MIP-9001651.