w0 JO0O U1l W

OO o oo oOOoOUTuUT U Ut urul s BB DBRDBDDAOWWWWWWWWWWNDNDMNODMNDMNDMDNMMMMMMNMMNYORPRPRrPRRPRPRRRRERR
AU WNRFP OWVWOJIOULE WNREFEFOWVWOIOOULEd WNREFPOWOVWOIONUPE WNEFOWVWOOIOUTEd WNRE O WVWOWLWJOUd WNhE o

$Id: ad-html.tcl,v 1.5 2006/05/13 18:38:21 philg Exp $
/tcl/ad-html.tcl

stuff for serving static .html pages
(e.g., putting in comment links, etc.)

H H H HF HF

+

written by philge@emit.edu on 7/1/98

significantly enhanced in December 1999 to modularize the comment and link

stuff so that .adp pages could use them as well (philg)

any request for a static html file will go through this proc
one good thing about doing things this way is that our site
still looks static to AltaVista

10/21/2005: philg modified to include serving Google ads
11/5/2018: philg modified to use auto ads and Fifth Chance codes

if { ![ad parameter "EnableAbstractURLsP" "abstract-url" 0] } {
ad register proc GET /*.html ad serve html page
ad register proc GET /*.htm ad_serve html page

}

this must stand for "do not disturb"
1if you put it into a static .html file, the
following Tcl proc serves the page unmolested

proc ad dnd tag {} {
return "<!--AD DND-->"
}

proc ad no ads tag {} {
return "<!--AD NOADS-->"
}

proc ad _insert ads tag {} {
return "<!--AD INSERTADS-->"
}

these entire directories will have their .html
files served intact

proc_doc ad space { {n 1} } "returns n spaces in html (uses nbsp)" {
set result ""
for {set i 0} {$i < $n} {incr i} {
append result " "
}
#append result " "
return Sresult

}

proc ad naked html patterns {} {
set glob patterns [list]
lappend glob patterns "/doc/*"
lappend glob patterns "/admin/*"
lappend glob patterns "/pages/*"
lappend glob patterns "/ct*"
lappend glob patterns "[ad parameter GlobalURLStub "" "/global"]/*"
return Sglob patterns

}

proc ad _google ad patterns {} {
set glob patterns [list]
lappend glob patterns "/materialism/*"
lappend glob patterns "/aquarium/*"

67
68
69
70
71
72
73
74
75
76
77
78
79

80
81
82
83
84
85
86
87
88
89
90

91
92
93
94
95
96
97
98
99
100
101
102
103

104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123

124

125

126

lappend glob patterns "/flying/*"
lappend glob patterns "/travel/*"
lappend glob patterns "/nz/*"

lappend glob patterns "/cr/*"

lappend glob patterns "/china/*"
lappend glob patterns "/book-reviews/*"
lappend glob patterns "/wtr/*"

lappend glob patterns "/wireless/*"
return Sglob patterns

}

proc google auto_ad {} {
set code from google {<script async src=
" //pagead2.googlesyndication.com/pagead/js/adsbygoogle.js"></script>
<script>
(adsbygoogle = window.adsbygoogle || [1) .push({
google ad client: "ca-pub-6665459316689270",
enable page level ads: true
K
</script>}
return Scode from google

}

proc google right column ad {} {
set code from google {<script async src=
" //pagead2.googlesyndication.com/pagead/js/adsbygoogle.js"></script>
<!-- PhilipGreenspunRightColumn -->
<ins class="adsbygoogle"
style="display:inline-block;width:160px;height:600px"
data-ad-client="ca-pub-6665459316689270"
data-ad-slot="6243994555"></ins>
<script>
(adsbygoogle = window.adsbygoogle || [1).push({});
</script>}
return "<p class=rightgooglead>$code from google</p>\n"
}

proc google center bottom ad {} {
set code from google {<script async src=
" //pagead2.googlesyndication.com/pagead/js/adsbygoogle.js"></script>
<!-- PhilipGreenspunCenterBottom -->
<ins class="adsbygoogle"
style="display:inline-block;width:728px;height:90px"
data-ad-client="ca-pub-6665459316689270"
data-ad-slot="1426782141"></ins>
<script>
(adsbygoogle = window.adsbygoogle || [1).push({});
</script>}
return "<p class=bottomcentergooglead>$code from google</p>\n"
}

proc google analytics code {} {
set code from google {<script type="text/javascript">
var gaqg = _gaq || I[1;
_gaqg.push([' setAccount',6 'UA '1);

_gaqg.push([' trackPageview'l) ;

(function() {

var ga = document.createElement ('script'); ga.type = 'text/javascript'; ga.async

= true;

ga.src = ('https:' == document.location.protocol ? 'https://ssl' : 'http://www')

+ '.google-analytics.com/ga.js';

var s = document.getElementsByTagName ('script') [0]; s.parentNode.insertBefore(ga,
s);

HO;

127
128
129
130
131
132
133
134

135
136
137
138
139
140
141
142
143

144
145
146
147
148
149
150
151

152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182

</script>}
return Scode from google
}

Amazon ads

a tag inside the HTML file can expand to an amazon product display or possibly just a
text link, whatever is more effective
currently there is no single page on the Amazon Web site

this will go into REGSUB so need to escape all of the & characters

proc amazon canon eos big block {} {

set code from amazon {
<p>
<center>
<iframe src=
"http://rcm.amazon.com/e/cm? t=pgreenspun-20\&o=1\&p=16\&l=stl\&mode=photo\&search=canon%2
0eos\&fcl1l=000000\<l=\&1lc1l=3366FF\&bgl=FFFFFF\&f=ifr" marginwidth="0" marginheight="0"
width="468" height="336" border="0" frameborder="0" style="border:none;" scrolling="no"
></iframe>

</center>
</p>

return Scode from amazon
}
proc_doc ad serve html page {ignore} {The procedure that actually serves all the HTML
pages on an ACS. It looks first to see if the file is in one of the naked html
directories. If so, it simply returns the raw bytes. It then looks to see if the
ad _dnd tag ("do not disturb") comment pattern is present. Again, if so, it simply
returns. Otherwise, the procedure tries to add comments and related links. If the

database is busy, it will simply add links to comments and related links.} {
set url stub [ad conn full url]
if { [empty string p Surl stubl } {
set url stub [ns_ conn url]
}

set full filename [ad conn file]
if { [empty string p $full filenamel } {
set full filename [ns url2file surl stub]

}

foreach naked pattern [ad naked html patterns] {

if [string match S$naked pattern Surl stubl] {
ns_returnfile 200 text/html $full filename
return

}
}

if { 1[file exists S$full filenamel} {
check to see 1f the file exists
if not, return a "file not found" message
set file name url "[ad parameter GlobalURLStub "" "/global"]/file-not-found.html"
set full path [ns url2file $file name url]
if [file exists $full pathl] {
ns_returnfile 404 text/html s$full path
} else {
ns_return 404 text/plain "File not found"
}

return

}

set stream [open $full filename r]

183
184
185
186
187
188
189
190
191
192
193
194

195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233

234
235
236
237
238
239
240
241

242
243
244
245

set whole page [read Sstream]
close Sstream

sometimes we don't want comments to come up

for a given page

if {[string first [ad dnd tagl S$whole pagel t= -1} {
ns_return 200 text/html Swhole page

return

}

let's put in Amazon ads
regsub -all -nocase "<!--AMAZON CANON EOS_ SYSTEM-->" Swhole page [
amazon canon eos big block] whole page

let's figure out if we're going to try to insert Google ads

set insert google ad p 0

foreach google ad pattern [ad google ad patterns] {

if [string match S$google ad pattern Surl stubl {
set insert google ad p 1
matches at least one pattern, let's break out of the loop and stop wasting CPU
break

}
}

let's check to see if this is the index file or a directory (ends in /)
set just the filename [file rootname [file tail Surl stubll

if { $just the filename == "index" || [file tail Surl stubl == "" } {

we don't want ads in the index files, which are carefully formatted
set insert _google ad p 0

if {[string first [ad no ads tagl Swhole pagel != -1} {

set insert google ad p 0

}

if {[string first [ad insert ads tagl S$whole pagel != -1 } {

whatever else happened, possibly on an index page, the publisher wants ads
set insert google ad p 1

}

if { [regexp -nocase {(.*)</body>(.*)} Swhole page match pre body post bodyl } {
there was a "close body" tag, let's try to insert a comment
link at least
before we do anything else, let's stream out what we can
if $insert google ad p {
let's try to insert a Google ad
ns log Notice "trying to insert a Google ad in $Surl stub"
we don't do "-all" so this should just be the first HR tag
regsub "<hr>" sSpre body "<hr>\n[google right column ad]l" pre body
append pre body "\n" [google center bottom_ ad]

}

ad_return top of page [static add curriculum bar if necessary Spre bodyl
if { [catch { set db [ns _db gethandle -timeout -1]1 } errmsgl || [empty string p $dbl

the non-blocking call to gethandle raised a Tcl error; this
means a db conn isn't free right this moment, so let's just
return the page with a link
ns log Notice "DB handle wasn't available in ad serve html page"
ns_write "
<hr width=300>
<center>
View/Add
Comments |
Related Links
</center>
[google analytics codel
</body>$post_body"

246
247
248
249
250
251
252

253

254
255
256
257
258
259
260
261
262
263

264

265
266
267
268
269
270
271
272
273
274
275
276
277
278
279

280
281
282

283
284
285
286
287
288
289
290
291
292

293
294

295
296
297
298

299
300

} else {
we got a db connection
set moby list [static_get comments and links $db Surl stub S$post bodyl
Release the DB handle
ns db releasehandle S$db
set comment link options fragment [static format comments and links $moby list]
now decide what to do with the comments and links we're queried from the
database
ns_write "$comment link options fragment\n\n[google analytics code]</body>$
post body"
}
} else {
couldn't find a </body> tag
ns_return 200 text/html Swhole page

}
}

helper proc for sticking in curriculum bar when necessary

proc_doc static_add curriculum bar if necessary {pre_body} "Returns the page, up to the
close body tag, with a curriculum bar added if necessary" {
if { ![ad parameter EnabledP curriculum 0] || ![ad parameter StickInStaticPagesP
curriculum 01 } {
return Spre body
}
set curriculum bar [curriculum bar]
if [empty string p Scurriculum barl {
we are using the curriculum system but this user doesn't need a bar
return Spre body
}
let's look for a good place to stuff the bar
rely on maximal matching in REGEXP
if { [regexp -nocase {(.*)<hr>(.*)} Spre body match up to last hr after last hr] } {
we found at least one HR, let's make sure that it is indeed
at the bottom of the page
if { [string length Sup to last hr]l > [string length $after last hr]l } {
this is indeed probably the last
append pre body with curriculum bar Sup to last hr "\n<center>[curriculum bar]
</center>\n" "<HR>" Safter last hr
} else {
found an HR but probably it isn't the last one
append pre body with curriculum bar S$pre body "\n<center>[curriculum bar]
</center>\n"
}
} else {
append pre body with curriculum bar Spre body "\n<center>[curriculum barl]l</center>\n"

return Spre body with curriculum bar

}

helper proc for coming back with options, info, etc.

proc_doc static get comments and links {db url stub {post body ""}} "Returns a list of
comment bytes link bytes options list comment option link option or the empty string if
this page isn't registered in the database" {

set user id [ad _get user id]

set selection [ns _db Oorlrow $db "select

page id,accept comments p,accept links p,inline comments p,inline links p from

static_pages where url stub = '[DoubleApos $url stub]'"]

if { S$selection == "n } {

this page isn't registered in the database so we can't

accept comments on it or anything

ns_log Notice "Someone grabbed $url stub but we weren't able to offer a comment link

because this page isn't registered in the db"

return ""

} else {

301
302
303
304
305
306

307
308
3009
310
311
312
313
314
315
316
317
318

319
320
321
322

323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344

345
346
347
348
349
350
351
352
353

354
355
356
357

set _variables after query
set options list [list]
set comment bytes ""
if { $inline comments p == "t" } {
we display comments in-line
set selection [ns db select $db "select comments.comment id, comments.page id,
comments.user id as poster user id, users.first names || ' ' || users.last name
as user name, message, posting time, html p, client file name, file type,
original width, original height, caption
from static_pages sp, comments not deleted comments, users
where sp.page id = comments.page id
and comments.user_id = users.user_id
and comments.page id = $page id
and comments.comment type = 'alternative perspective'
order by posting time"]
set at_ least one comment found p
while { [ns_db getrow $db S$selection] } {
set variables after query
set at least one comment found p
append comment bytes "<blockquote>
[format static comment $comment id $client file name $file type $original width $
original height $caption $message $html pl
n
if { Suser id == S$poster user id} {
the user wrote the message, so let him/her edit it
append comment bytes " \[edit your
comment \]1\n"

}

append comment bytes "

\n
-- $user name"

append comment bytes ", [util AnsiDatetoPrettyDate $posting time]™"
append comment bytes "</blockquote>\n"
}

}

if { Saccept comments p == "t" && S$inline comments p == "t" } {
we only display the option if we're inlining comments;
we assume that if the comments aren't in line but are legal
then the publisher has an explicit link
set comment option "Add a comment"
lappend options list S$comment option

} else {
set comment option ""

}

links

set link bytes "™

if { $inline links p == "t" } {
set selection [ns_db select $db "select links.page id, links.user id as
poster user id, users.first names || ' ' || users.last name as user name,

links.link title, links.link description, links.url
from static pages sp, links, users

where sp.page id = links.page id

and users.user id = links.user id

and links.page id = $page id

and status = 'live'

order by posting time"]

while { [ns db getrow $db $selection] } {
set_variables_after query

append link bytes "$link title- §
link description"

if { Suser id == S$poster user id} {
the user added, so let him/her edit it
append link bytes " (<A HREF=\"/links/edit?page id=$page id&url=[

358
359
360

361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381

382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418

ns_urlencode $url]\">edit/delete)"

} else {
the user did not add it, link to the community member page
append link bytes " (contributed by $
user name)"

}

append link bytes "\n<p>\n"

}
if { Saccept links p == "t" && Sinline links p == "t" } {
we only display the option if we're inlining links;
we assume that if the links aren't in line but are legal
then the publisher has an explicit link
set link option "Add a link"
lappend options list $link option
} else {
set link option ""
}

}

return [list Scomment bytes $link bytes Soptions list $comment option $link optionl]

helper proc for formatting comments, links, etc.

proc_doc static format comments and links {moby list} "Takes list of comment bytes
link bytes options list comment option link option and produces HTML fragment to stick
at bottom of page." {
if [empty string p S$moby list] {
return ""
}
set comment bytes [lindex Smoby list 0]
set link bytes [lindex Smoby list 1]
set options list [lindex Smoby list 2]
set comment option [lindex Smoby list 3]
set link option [lindex Smoby list 4]
if { [empty string p Scomment bytes] && [empty string p $link bytes]l } {
if { [llength Soptions list] > Y {
set centered options "<center>[join $options list " | "]</center>"
} else {
set centered options ""
}

return Scentered options

} elseif { ![empty string p Scomment bytes] && [empty string p $link bytes] } {
there are comments but no links

return "<center><h3>Reader's Comments</h3></center>
$comment bytes

<center>[join $options list " | "]l</center>"

} elseif { [empty string p Scomment bytes] && ![empty string p $link bytes] } {
links but no comments

return "<center><h3>Related Links</h3></center>
$link bytes

<center>[join $options list " | "]</center>"

} else {

comments and links

return "<center><h3>Reader's Comments</h3></center>
$comment bytes

<center>

$comment option

</center>

<center><h3>Related Links</h3></center>

$link bytes

<center>

$link option

</center>"

419
420
421
422
423
424
425

426
427
428
429
430
431
432
433
434
435
436

437
438
439

440
441
442
443

444
445
446
447
448
449
450
451
452
453

454
455
456
457
458

459

460
461
462
463
464
465
466
467

468

469

470
471

}

Helper procedure for formatting 'alternative perspective' comments on static

pages, which presents inline images or attachment links as appropriate.

Taken from a similar procedure in ad-general-comments.tcl.

proc format static comment { comment id client file name file type original width
original height caption content comment html p } {

set return string ""
set return url "[ns conn url]?[export ns set vars url]"

if { ![empty string p Sclient file namel } {

We have an attachment.

if { [string match "image/*" [string tolower S$file typell } {
It was an image.
if { ![empty string p Soriginal width]
&& Soriginal width < [ad_parameter InlineImageMaxWidth "comments" 1} {
It's narrow enough to display inline.
append return string "<center><img src=\"/comments/attachment/$comment id/$
client file name\" width=$original width height=$original height><p><i>$
caption</i></center>
\n[util maybe convert to html $content $comment html p]
\n n
} else {
Send to an image display page.
append return string "[util maybe convert to html $content $comment html pl
\n
<i>Image: <a href=\"/comments/image-attachment? [export url vars comment id
return url]l\">$client file name</i>"

} else {
Send to raw file download.
append return string "[util maybe convert to html $content $comment html p]
\n
<i>Attachment: <a href=\"/comments/attachment/$comment id/$
client file name\">$client file name</i>"
}
} else {
No attachment

append return string "[util maybe convert to html $content $comment html p]l\n"

}

return Sreturn string

proc_doc send author comment p { comment type action } "Returns email notification state
type of html comment" ({

if { [string compare saction "add"] == } {

switch $comment type {
"unanswered question" { return [ad parameter EmailNewUnansweredQuestion comments]
}
"alternative perspective" { return [ad parameter EmailNewAlternativePerspective
comments] }
"rating" { return [ad parameter EmailNewRating comments] }
default { return 0 }

}

} else {

switch Scomment type {
"unanswered question" { return [ad parameter EmailEditedUnansweredQuestion
comments] }
"alternative perspective" { return [ad parameter EmailEditedAlternativePerspective
comments] }
"rating" { return [ad parameter EmailEditedRating comments] }
default { return 0 }

472
473
474
475
476
477
478
479
480
481
482
483
484
485
486

487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527

528
529
530
531
532
533
534
535

ns register'ed to

/comments/attachment/ [comment id]/[file name] Returns a
MIME-typed attachment based on the comment id. We use this so that
the user's browser shows the filename the file was uploaded with
when prompting to save instead of the name of a Tcl file (like
"raw-file.tcl")

Stolen from ad-general-comments.tcl.

HH o H H H

proc ad_static_comments get attachment { ignore } {
if { tlregexp {([*/1+)/([*/1+)S$} [ns conn url]l match comment id client filenamel } {
ad_return error "Malformed Attachment Request" "Your request for a file attachment
was malformed."
return

}

set db [ns_db gethandle subqueryl]

make sure comment id is an integer
validate integer "comment id" Scomment id

set file type [database to tcl string $db "select file type
from comments
where comment id = $comment id"]

this is the new stuff

written by dan parker

set tmp file name [ns mktemp /web/philip/tmp files/${comment id}XXXXXX]
ns_ora blob get file $db

select attachment

from comments

where comment id = $comment id" Stmp file name

ns_db releasehandle S$db

ns_returnfile 200 $file type sStmp file name

ns_unlink S$tmp file name
end of new stuff

old stuff to eb commented out

ReturnHeaders $file type

if [catch { ns ora write blob $db "select attachment
from comments

where comment id = $Scomment id"} errmsg] {

set url [ns_conn url]

set header [ns conn headers]

set user agent [ns set iget $header USER-AGENT]

set referer [ns_set iget Sheader REFERER]

set peeraddr [peeraddr]

ns log warning "dan error 5567 $comment id url = $url - perraddr = $peeraddr -
referer = $referer - user agent = $Suser agent

#ll

#o)

ns db releasehandle $db

}

ad_register proc GET /comments/attachment/* ad static comments get attachment

