
1 # $Id: ad-html.tcl,v 1.5 2006/05/13 18:38:21 philg Exp $
2 # /tcl/ad-html.tcl
3 #
4 # stuff for serving static .html pages
5 # (e.g., putting in comment links, etc.)
6
7 # written by philg@mit.edu on 7/1/98
8
9 # significantly enhanced in December 1999 to modularize the comment and link
10 # stuff so that .adp pages could use them as well (philg)
11
12 # any request for a static html file will go through this proc
13 # one good thing about doing things this way is that our site
14 # still looks static to AltaVista
15
16 # 10/21/2005: philg modified to include serving Google ads
17
18 # 11/5/2018: philg modified to use auto ads and Fifth Chance codes
19
20 if { ![ad_parameter "EnableAbstractURLsP" "abstract-url" 0] } {
21 ad_register_proc GET /*.html ad_serve_html_page
22 ad_register_proc GET /*.htm ad_serve_html_page
23 }
24
25 # this must stand for "do not disturb"
26 # if you put it into a static .html file, the
27 # following Tcl proc serves the page unmolested
28
29 proc ad_dnd_tag {} {
30 return "<!--AD_DND-->"
31 }
32
33 proc ad_no_ads_tag {} {
34 return "<!--AD_NOADS-->"
35 }
36
37 proc ad_insert_ads_tag {} {
38 return "<!--AD_INSERTADS-->"
39 }
40
41 # these entire directories will have their .html
42 # files served intact
43
44 proc_doc ad_space { {n 1} } "returns n spaces in html (uses nbsp)" {
45 set result ""
46 for {set i 0} {$i < $n} {incr i} {
47 append result " "
48 }
49 #append result " "
50 return $result
51 }
52
53 proc ad_naked_html_patterns {} {
54 set glob_patterns [list]
55 lappend glob_patterns "/doc/*"
56 lappend glob_patterns "/admin/*"
57 lappend glob_patterns "/pages/*"
58 lappend glob_patterns "/ct*"
59 lappend glob_patterns "[ad_parameter GlobalURLStub "" "/global"]/*"
60 return $glob_patterns
61 }
62
63 proc ad_google_ad_patterns {} {
64 set glob_patterns [list]
65 lappend glob_patterns "/materialism/*"
66 lappend glob_patterns "/aquarium/*"

67 lappend glob_patterns "/flying/*"
68 lappend glob_patterns "/travel/*"
69 lappend glob_patterns "/nz/*"
70 lappend glob_patterns "/cr/*"
71 lappend glob_patterns "/china/*"
72 lappend glob_patterns "/book-reviews/*"
73 lappend glob_patterns "/wtr/*"
74 lappend glob_patterns "/wireless/*"
75 return $glob_patterns
76 }
77
78 proc google_auto_ad {} {
79 set code_from_google {<script async src=

"//pagead2.googlesyndication.com/pagead/js/adsbygoogle.js"></script>
80 <script>
81 (adsbygoogle = window.adsbygoogle || []).push({
82 google_ad_client: "ca-pub-6665459316689270",
83 enable_page_level_ads: true
84 });
85 </script>}
86 return $code_from_google
87 }
88
89 proc google_right_column_ad {} {
90 set code_from_google {<script async src=

"//pagead2.googlesyndication.com/pagead/js/adsbygoogle.js"></script>
91 <!-- PhilipGreenspunRightColumn -->
92 <ins class="adsbygoogle"
93 style="display:inline-block;width:160px;height:600px"
94 data-ad-client="ca-pub-6665459316689270"
95 data-ad-slot="6243994555"></ins>
96 <script>
97 (adsbygoogle = window.adsbygoogle || []).push({});
98 </script>}
99 return "<p class=rightgooglead>$code_from_google</p>\n"
100 }
101
102 proc google_center_bottom_ad {} {
103 set code_from_google {<script async src=

"//pagead2.googlesyndication.com/pagead/js/adsbygoogle.js"></script>
104 <!-- PhilipGreenspunCenterBottom -->
105 <ins class="adsbygoogle"
106 style="display:inline-block;width:728px;height:90px"
107 data-ad-client="ca-pub-6665459316689270"
108 data-ad-slot="1426782141"></ins>
109 <script>
110 (adsbygoogle = window.adsbygoogle || []).push({});
111 </script>}
112 return "<p class=bottomcentergooglead>$code_from_google</p>\n"
113 }
114
115 proc google_analytics_code {} {
116 set code_from_google {<script type="text/javascript">
117
118 var _gaq = _gaq || [];
119 _gaq.push(['_setAccount', 'UA-315149-1']);
120 _gaq.push(['_trackPageview']);
121
122 (function() {
123 var ga = document.createElement('script'); ga.type = 'text/javascript'; ga.async

= true;
124 ga.src = ('https:' == document.location.protocol ? 'https://ssl' : 'http://www')

+ '.google-analytics.com/ga.js';
125 var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(ga,

s);
126 })();

127
128 </script>}
129 return $code_from_google
130 }
131
132 # Amazon ads
133
134 # a tag inside the HTML file can expand to an amazon product display or possibly just a

text link, whatever is more effective
135 # currently there is no single page on the Amazon Web site
136
137 # this will go into REGSUB so need to escape all of the & characters
138
139 proc amazon_canon_eos_big_block {} {
140 set code_from_amazon {
141 <p>
142 <center>
143 <iframe src=

"http://rcm.amazon.com/e/cm?t=pgreenspun-20\&o=1\&p=16\&l=st1\&mode=photo\&search=canon%2
0eos\&fc1=000000\<1=\&lc1=3366FF\&bg1=FFFFFF\&f=ifr" marginwidth="0" marginheight="0"
width="468" height="336" border="0" frameborder="0" style="border:none;" scrolling="no"
></iframe>

144 </center>
145 </p>
146 }
147 return $code_from_amazon
148 }
149
150
151 proc_doc ad_serve_html_page {ignore} {The procedure that actually serves all the HTML

pages on an ACS. It looks first to see if the file is in one of the naked_html
directories. If so, it simply returns the raw bytes. It then looks to see if the
ad_dnd_tag ("do not disturb") comment pattern is present. Again, if so, it simply
returns. Otherwise, the procedure tries to add comments and related links. If the
database is busy, it will simply add links to comments and related links.} {

152 set url_stub [ad_conn full_url]
153 if { [empty_string_p $url_stub] } {
154 set url_stub [ns_conn url]
155 }
156
157 set full_filename [ad_conn file]
158 if { [empty_string_p $full_filename] } {
159 set full_filename [ns_url2file $url_stub]
160 }
161
162 foreach naked_pattern [ad_naked_html_patterns] {
163 if [string match $naked_pattern $url_stub] {
164 ns_returnfile 200 text/html $full_filename
165 return
166 }
167 }
168
169 if { ![file exists $full_filename]} {
170 # check to see if the file exists
171 # if not, return a "file not found" message
172 set file_name_url "[ad_parameter GlobalURLStub "" "/global"]/file-not-found.html"
173 set full_path [ns_url2file $file_name_url]
174 if [file exists $full_path] {
175 ns_returnfile 404 text/html $full_path
176 } else {
177 ns_return 404 text/plain "File not found"
178 }
179 return
180 }
181
182 set stream [open $full_filename r]

183 set whole_page [read $stream]
184 close $stream
185
186 ## sometimes we don't want comments to come up
187 ## for a given page
188 if {[string first [ad_dnd_tag] $whole_page] != -1} {
189 ns_return 200 text/html $whole_page
190 return
191 }
192
193 # let's put in Amazon ads
194 regsub -all -nocase "<!--AMAZON_CANON_EOS_SYSTEM-->" $whole_page [

amazon_canon_eos_big_block] whole_page
195
196 # let's figure out if we're going to try to insert Google ads
197 set insert_google_ad_p 0
198 foreach google_ad_pattern [ad_google_ad_patterns] {
199 if [string match $google_ad_pattern $url_stub] {
200 set insert_google_ad_p 1
201 # matches at least one pattern, let's break out of the loop and stop wasting CPU
202 break
203 }
204 }
205 # let's check to see if this is the index file or a directory (ends in /)
206 set just_the_filename [file rootname [file tail $url_stub]]
207 if { $just_the_filename == "index" || [file tail $url_stub] == "" } {
208 # we don't want ads in the index files, which are carefully formatted
209 set insert_google_ad_p 0
210 }
211 if {[string first [ad_no_ads_tag] $whole_page] != -1} {
212 set insert_google_ad_p 0
213 }
214 if {[string first [ad_insert_ads_tag] $whole_page] != -1 } {
215 # whatever else happened, possibly on an index page, the publisher wants ads
216 set insert_google_ad_p 1
217 }
218
219
220 if { [regexp -nocase {(.*)</body>(.*)} $whole_page match pre_body post_body] } {
221 # there was a "close body" tag, let's try to insert a comment
222 # link at least
223 # before we do anything else, let's stream out what we can
224 if $insert_google_ad_p {
225 # let's try to insert a Google ad
226 # ns_log Notice "trying to insert a Google ad in $url_stub"
227 # we don't do "-all" so this should just be the first HR tag
228 regsub "<hr>" $pre_body "<hr>\n[google_right_column_ad]" pre_body
229 append pre_body "\n" [google_center_bottom_ad]
230 }
231 ad_return_top_of_page [static_add_curriculum_bar_if_necessary $pre_body]
232
233 if { [catch { set db [ns_db gethandle -timeout -1] } errmsg] || [empty_string_p $db]

} {
234 # the non-blocking call to gethandle raised a Tcl error; this
235 # means a db conn isn't free right this moment, so let's just
236 # return the page with a link
237 ns_log Notice "DB handle wasn't available in ad_serve_html_page"
238 ns_write "
239 <hr width=300>
240 <center>
241 View/Add

Comments |
242 Related Links
243 </center>
244 [google_analytics_code]
245 </body>$post_body"

246 } else {
247 # we got a db connection
248 set moby_list [static_get_comments_and_links $db $url_stub $post_body]
249 # Release the DB handle
250 ns_db releasehandle $db
251 set comment_link_options_fragment [static_format_comments_and_links $moby_list]
252 # now decide what to do with the comments and links we're queried from the

database
253 ns_write "$comment_link_options_fragment\n\n[google_analytics_code]</body>$

post_body"
254 }
255 } else {
256 # couldn't find a </body> tag
257 ns_return 200 text/html $whole_page
258 }
259 }
260
261 # helper proc for sticking in curriculum bar when necessary
262
263 proc_doc static_add_curriculum_bar_if_necessary {pre_body} "Returns the page, up to the

close body tag, with a curriculum bar added if necessary" {
264 if { ![ad_parameter EnabledP curriculum 0] || ![ad_parameter StickInStaticPagesP

curriculum 0] } {
265 return $pre_body
266 }
267 set curriculum_bar [curriculum_bar]
268 if [empty_string_p $curriculum_bar] {
269 # we are using the curriculum system but this user doesn't need a bar
270 return $pre_body
271 }
272 # let's look for a good place to stuff the bar
273 # rely on maximal matching in REGEXP
274 if { [regexp -nocase {(.*)<hr>(.*)} $pre_body match up_to_last_hr after_last_hr] } {
275 # we found at least one HR, let's make sure that it is indeed
276 # at the bottom of the page
277 if { [string length $up_to_last_hr] > [string length $after_last_hr] } {
278 # this is indeed probably the last
279 append pre_body_with_curriculum_bar $up_to_last_hr "\n<center>[curriculum_bar]

</center>\n" "<HR>" $after_last_hr
280 } else {
281 # found an HR but probably it isn't the last one
282 append pre_body_with_curriculum_bar $pre_body "\n<center>[curriculum_bar]

</center>\n"
283 }
284 } else {
285 append pre_body_with_curriculum_bar $pre_body "\n<center>[curriculum_bar]</center>\n"
286 }
287 return $pre_body_with_curriculum_bar
288 }
289
290 # helper proc for coming back with options, info, etc.
291
292 proc_doc static_get_comments_and_links {db url_stub {post_body ""}} "Returns a list of

comment_bytes link_bytes options_list comment_option link_option or the empty string if
this page isn't registered in the database" {

293 set user_id [ad_get_user_id]
294 set selection [ns_db 0or1row $db "select

page_id,accept_comments_p,accept_links_p,inline_comments_p,inline_links_p from
static_pages where url_stub = '[DoubleApos $url_stub]'"]

295 if { $selection == "" } {
296 # this page isn't registered in the database so we can't
297 # accept comments on it or anything
298 ns_log Notice "Someone grabbed $url_stub but we weren't able to offer a comment link

because this page isn't registered in the db"
299 return ""
300 } else {

301 set_variables_after_query
302 set options_list [list]
303 set comment_bytes ""
304 if { $inline_comments_p == "t" } {
305 # we display comments in-line
306 set selection [ns_db select $db "select comments.comment_id, comments.page_id,

comments.user_id as poster_user_id, users.first_names || ' ' || users.last_name
as user_name, message, posting_time, html_p, client_file_name, file_type,
original_width, original_height, caption

307 from static_pages sp, comments_not_deleted comments, users
308 where sp.page_id = comments.page_id
309 and comments.user_id = users.user_id
310 and comments.page_id = $page_id
311 and comments.comment_type = 'alternative_perspective'
312 order by posting_time"]
313 set at_least_one_comment_found_p 0
314 while { [ns_db getrow $db $selection] } {
315 set_variables_after_query
316 set at_least_one_comment_found_p 1
317 append comment_bytes "<blockquote>
318 [format_static_comment $comment_id $client_file_name $file_type $original_width $

original_height $caption $message $html_p]
319 "
320 if { $user_id == $poster_user_id} {
321 # the user wrote the message, so let him/her edit it
322 append comment_bytes " \[edit your
comment \]\n"

323 }
324
325 append comment_bytes "

\n
326 -- $user_name"
327 append comment_bytes ", [util_AnsiDatetoPrettyDate $posting_time]"
328 append comment_bytes "</blockquote>\n"
329 }
330 }
331 if { $accept_comments_p == "t" && $inline_comments_p == "t" } {
332 # we only display the option if we're inlining comments;
333 # we assume that if the comments aren't in line but are legal
334 # then the publisher has an explicit link
335 set comment_option "Add a comment"
336 lappend options_list $comment_option
337 } else {
338 set comment_option ""
339 }
340
341 # links
342 set link_bytes ""
343 if { $inline_links_p == "t" } {
344 set selection [ns_db select $db "select links.page_id, links.user_id as

poster_user_id, users.first_names || ' ' || users.last_name as user_name,
links.link_title, links.link_description, links.url

345 from static_pages sp, links, users
346 where sp.page_id = links.page_id
347 and users.user_id = links.user_id
348 and links.page_id = $page_id
349 and status = 'live'
350 order by posting_time"]
351 while { [ns_db getrow $db $selection] } {
352 set_variables_after_query
353 append link_bytes "$link_title- $

link_description"
354
355 if { $user_id == $poster_user_id} {
356 # the user added, so let him/her edit it
357 append link_bytes " (<A HREF=\"/links/edit?page_id=$page_id&url=[

ns_urlencode $url]\">edit/delete)"
358 } else {
359 # the user did not add it, link to the community_member page
360 append link_bytes " (contributed by $
user_name)"

361 }
362 append link_bytes "\n<p>\n"
363 }
364 }
365 if { $accept_links_p == "t" && $inline_links_p == "t" } {
366 # we only display the option if we're inlining links;
367 # we assume that if the links aren't in line but are legal
368 # then the publisher has an explicit link
369 set link_option "Add a link"
370 lappend options_list $link_option
371 } else {
372 set link_option ""
373 }
374 }
375 return [list $comment_bytes $link_bytes $options_list $comment_option $link_option]
376 }
377
378
379 # helper proc for formatting comments, links, etc.
380
381 proc_doc static_format_comments_and_links {moby_list} "Takes list of comment_bytes

link_bytes options_list comment_option link_option and produces HTML fragment to stick
at bottom of page." {

382 if [empty_string_p $moby_list] {
383 return ""
384 }
385 set comment_bytes [lindex $moby_list 0]
386 set link_bytes [lindex $moby_list 1]
387 set options_list [lindex $moby_list 2]
388 set comment_option [lindex $moby_list 3]
389 set link_option [lindex $moby_list 4]
390 if { [empty_string_p $comment_bytes] && [empty_string_p $link_bytes] } {
391 if { [llength $options_list] > 0 } {
392 set centered_options "<center>[join $options_list " | "]</center>"
393 } else {
394 set centered_options ""
395 }
396 return $centered_options
397 } elseif { ![empty_string_p $comment_bytes] && [empty_string_p $link_bytes] } {
398 # there are comments but no links
399 return "<center><h3>Reader's Comments</h3></center>
400 $comment_bytes
401 <center>[join $options_list " | "]</center>"
402 } elseif { [empty_string_p $comment_bytes] && ![empty_string_p $link_bytes] } {
403 # links but no comments
404 return "<center><h3>Related Links</h3></center>
405 $link_bytes
406 <center>[join $options_list " | "]</center>"
407 } else {
408 # comments and links
409 return "<center><h3>Reader's Comments</h3></center>
410 $comment_bytes
411 <center>
412 $comment_option
413 </center>
414 <center><h3>Related Links</h3></center>
415 $link_bytes
416 <center>
417 $link_option
418 </center>"

419 }
420 }
421
422 # Helper procedure for formatting 'alternative_perspective' comments on static
423 # pages, which presents inline images or attachment links as appropriate.
424 # Taken from a similar procedure in ad-general-comments.tcl.
425 proc format_static_comment { comment_id client_file_name file_type original_width

original_height caption content comment_html_p } {
426 set return_string ""
427 set return_url "[ns_conn url]?[export_ns_set_vars url]"
428
429 if { ![empty_string_p $client_file_name] } {
430 # We have an attachment.
431 if { [string match "image/*" [string tolower $file_type]] } {
432 # It was an image.
433 if { ![empty_string_p $original_width]
434 && $original_width < [ad_parameter InlineImageMaxWidth "comments" 512] } {
435 # It's narrow enough to display inline.
436 append return_string "<center><img src=\"/comments/attachment/$comment_id/$

client_file_name\" width=$original_width height=$original_height><p><i>$
caption</i></center>
\n[util_maybe_convert_to_html $content $comment_html_p]
\n"

437 } else {
438 # Send to an image display page.
439 append return_string "[util_maybe_convert_to_html $content $comment_html_p]

\n
<i>Image: <a href=\"/comments/image-attachment?[export_url_vars comment_id
return_url]\">$client_file_name</i>"

440 }
441 } else {
442 # Send to raw file download.
443 append return_string "[util_maybe_convert_to_html $content $comment_html_p]

\n
<i>Attachment: <a href=\"/comments/attachment/$comment_id/$
client_file_name\">$client_file_name</i>"

444 }
445 } else {
446 # No attachment
447 append return_string "[util_maybe_convert_to_html $content $comment_html_p]\n"
448 }
449 return $return_string
450 }
451
452
453 proc_doc send_author_comment_p { comment_type action } "Returns email notification state

type of html comment" {
454
455 if { [string compare $action "add"] == 0 } {
456
457 switch $comment_type {
458 "unanswered_question" { return [ad_parameter EmailNewUnansweredQuestion comments]

}
459 "alternative_perspective" { return [ad_parameter EmailNewAlternativePerspective

comments] }
460 "rating" { return [ad_parameter EmailNewRating comments] }
461 default { return 0 }
462 }
463
464 } else {
465
466 switch $comment_type {
467 "unanswered_question" { return [ad_parameter EmailEditedUnansweredQuestion

comments] }
468 "alternative_perspective" { return [ad_parameter EmailEditedAlternativePerspective

comments] }
469 "rating" { return [ad_parameter EmailEditedRating comments] }
470 default { return 0 }
471 }

472 }
473 }
474
475
476 # ns_register'ed to
477 # /comments/attachment/[comment_id]/[file_name] Returns a
478 # MIME-typed attachment based on the comment_id. We use this so that
479 # the user's browser shows the filename the file was uploaded with
480 # when prompting to save instead of the name of a Tcl file (like
481 # "raw-file.tcl")
482 # Stolen from ad-general-comments.tcl.
483
484 proc ad_static_comments_get_attachment { ignore } {
485 if { ![regexp {([^/]+)/([^/]+)$} [ns_conn url] match comment_id client_filename] } {
486 ad_return_error "Malformed Attachment Request" "Your request for a file attachment

was malformed."
487 return
488 }
489 set db [ns_db gethandle subquery]
490
491
492 # make sure comment_id is an integer
493 validate_integer "comment_id" $comment_id
494
495 set file_type [database_to_tcl_string $db "select file_type
496 from comments
497 where comment_id = $comment_id"]
498
499 # this is the new stuff
500 # written by dan parker
501 set tmp_file_name [ns_mktemp /web/philip/tmp_files/${comment_id}XXXXXX]
502
503 ns_ora blob_get_file $db "
504 select attachment
505 from comments
506 where comment_id = $comment_id" $tmp_file_name
507
508 ns_db releasehandle $db
509
510 ns_returnfile 200 $file_type $tmp_file_name
511
512 ns_unlink $tmp_file_name
513 # end of new stuff
514
515 # old stuff to eb commented out
516
517 # ReturnHeaders $file_type
518
519 # if [catch { ns_ora write_blob $db "select attachment
520 # from comments
521 # where comment_id = $comment_id"} errmsg] {
522 # set url [ns_conn url]
523 # set header [ns_conn headers]
524 # set user_agent [ns_set iget $header USER-AGENT]
525 # set referer [ns_set iget $header REFERER]
526 # set peeraddr [peeraddr]
527 # ns_log warning "dan_error 5567 $comment_id url = $url - perraddr = $peeraddr -

referer = $referer - user_agent = $user_agent
528 #"
529 # }
530 # ns_db releasehandle $db
531 }
532
533 ad_register_proc GET /comments/attachment/* ad_static_comments_get_attachment
534
535

