Medical School 2020, Year 1, Week 14

From our anonymous insider..

“I thought I was in a nightmare,” one classmate wailed the day after election day. Every classmate seems to have voted, but none openly support Donald Trump. Type-A Anita held a class election party at her apartment with “I’m with Her” plastered on every wall. One classmate commented about the ease of registering to vote in a new state. He used an out-of-state ID as proof of identity but never had to show any proof of residence: “I just typed my address into the online voter portal. They never requested a utility bill, or anything. The bouncer at Friday’s bar looked at my ID more closely than the election volunteer.” Jane and I left before the results were in, but the mood of our hostess gradually darkened.

On post-election Wednesday, our class president sent a GroupMe message to the class: “If anyone would like to talk about last night’s election, please reach out to myself or the VP.” I stopped to join a conversation among three students in the hall. A proudly gay student said, “I always believed most people thought like me. I feel so alone. I don’t feel safe. I never realized how many racists there are in America.” I asked him what he thought about Peter Thiel’s speech at the RNC? He had never heard of Peter Thiel. A rural West Virginian said that her entire family supports Trump, but she cannot. She described half of American voters as “brainwashed over guns,” but said she still loves her family.

At our monthly journal club, where an instructor leads a six-person discussion of an academic paper, a student asked to be excused to make a phone call. The female biophysicist replied, “Well, apparently, anything goes now. Why not? Go ahead.” I chuckled, but Anita began to cry and excused herself.

Anatomy lab was not as exciting as last week: a short dissection, mostly identifying different structures that had not yet been removed from the thoracic cavity. We observed the descending aorta as it passes through the diaphragm into the abdominal cavity. One cadaver had an enlarged aorta, many had plaque build-ups. We observed the venous drainage system including the azygos and hemiazygos veins that drain the thoracic wall. We compared this system among cadavers and noticed the immense amount of normal variation. Some cadavers have the hemiazygos system drain the entire left thorax into the azygos vein, a tributary to superior vena cava. Another variant had divided drainage basins with some going to the azygos system and some draining into the left subclavian vein. One cadaver had a visibly enlarged azygous vein. The trauma surgeon immediately started looking for deep venous thrombosis (DVT). If a large vein in the leg is occluded, the azygos vein acts as collateral circulation, partially bypassing the blockage. We could not find any blockage.

We also observed the paravertebral ganglia column, a fascinating bunch of neurons that run on either side of the vertebrae. These sympathetic nerves have their cell body, e.g., nucleus, in the spinal cord but their axon exits the vertebrae and runs parallel alongside the vertebral column. It was small and easily mistaken for connective tissue. An instructor complimented our group for identifying this nerve!

Lectures featured a pediatric cardiologist. The whole class quickly fell in love with her three decades of stories about saving babies with congenital heart defects. Congenital heart defects, such as atrial septal defects (ASD), ventricular septal defects (VSD) and patent ductus arteriosus (PDA), are not uncommon. She explained these in the context of embryological heart development. Fetal circulation is quite different than after a child’s first breath. The fetus uses hemoglobin with a higher oxygen affinity to steal oxygen bound to the mother’s hemoglobin.

Most fetal blood bypasses the pulmonary circulation of the lung through the ductus arteriosus, a shunt between the pulmonary artery and aorta. The ductus arteriosus typically closes within a few hours to days after a baby’s first breath. However, if the ductus arteriosus fails to close, the PDA could lead to severe hypoxia, heart development problems and death. Cardiothoracic surgeons can now close this using a catheter guidewire system instead of open heart surgery. Frequently the PDA patient has other heart defects that require more invasive surgery. Babies with an ASD, VSD, or PDA can live completely normal lives once this is fixed. She concluded by showing the class pictures of her “extended family”.

The patient case followed the story of a baby with an exceedingly rare genetic disorder. Based on an ultrasound, physicians determined that “Kate” would never be able to talk, and would suffer from severe neurological impairment. Only fifty percent of babies with this disorder do not make it to birth, and a mere five percent make it to one year of age. Physicians advised her parents to terminate the pregnancy. The parents refused, “She deserved a fighting chance. Her fight was between herself and Him (pointing up to the sky).”

An early C-section saved Kate and the mother. Kate was then whisked off to the infant operating room to begin work on her full range of birth defects. These would include several life-threatening heart defects, respiratory distress and terrible GI troubles. She was placed on extracorporeal membrane oxygenation (ECMO) which functions as the baby’s lungs and heart. The father broke down when he recounted his memory of this machine. Each ECMO machine has a lever attached. In the event the power goes out at the hospital, he would have to crank the lever to continue pumping oxygenated blood into Kate.

Now seven years old, Kate is fed using a G-tube and is unable to speak words. However, she can smile, laugh, and walk with assistance. Kate enjoys playing with her two younger, but already bigger, siblings. Medicaid pays for a daily caretaker to assist the parents. One classmate asked, “What are your hopes for Kate.” The parents responded, “Kate has surpassed everything we hoped for. We were told she wouldn’t survive the pregnancy. She did. We were told she wouldn’t survive past the age of one. Every additional day is a blessing.”

Statistics for the week… Study: 15 hours. Sleep: 7 hours/night, still staying at Jane’s; Fun: 1 outings. Example fun: Dinner party with Jane’s family.

The Whole Book: http://tinyurl.com/MedicalSchool2020

2 thoughts on “Medical School 2020, Year 1, Week 14

  1. Be careful, young med student! Jane may not only be trying to get her MD degree but also the MRSofMD degree (more valuable than a simple MRS degree!). She’s got you in the cross hairs.

  2. The heartwarming story of severely-disabled little Kate loses its charm when we realize that all the rest of us are paying for Kate’s hideously expensive care because of her parents’ selfish arrogance. “Medicaid pays for a daily caretaker” means “taxpayers pay for a daily caretaker, plus frequent medical intervention.”

Comments are closed.